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Molecular Structure Determination by Convex Global
Underestimation of Local Energy Minima

A.T. Phillips, J.B. Rosen, V.H. Walke

ABSTRACT. The determination of a stable molecular structure can often be
formulated in terms of calculating the global (or approximate global) minimum
of a potential energy function. Computing the global minimum of this function
is very difficult because it typically has a very large number of local minima
which may grow exponentially with molecule size. The optimization method
presented involves collecting a large number of conformers, each attained by
finding a local minimum of the potential energy function from a random starting
point. The information from these conformers is then used to form a convex
quadratic global underestimating function for the potential energy of all known
conformers. This underestimator is an L1 approximation to all known local
minima, and is obtained by a linear programming formulation and solution. The
minimum of this underestimator is used to predict the global minimum for the
function, allowing a localized conformer search to be performed based on the
predicted minimum. The new set of conformers generated by the localized
search serves as the basis for another quadratic underestimation step in an
iterative algorithm. This algorithm has been used to determine the structures of
homopolymers of lengthn ≤ 30 with no sidechains. While it is estimated that
there areO(3n) local minima for a chain of lengthn, this method requiresO(n4)
computing time on average. It is also shown that the global minimum potential
energy values lie on a concave quadratic curve forn ≤ 30. This important
property permits estimation of the minimum energy for larger molecules, and
also can be used to accelerate the global minimization algorithm.

1.  Introduction

An important class of difficult global minimization problems arise as an essential fea-
ture of molecular structure calculations. The determination of a stable molecular structure
can often be formulated in terms of calculating the global (or approximate global) mini-
mum of a potential energy function (see [8]). Computing the global minimum of this func-
tion is very difficult because it typically has a very large number of local minima which
may grow exponentially with molecule size.
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One such application is the well known protein folding problem. It is widely accepted
that the folded state of a protein is completely dependent on the one-dimensional linear
sequence (i.e. “primary” sequence) of amino acids from which the protein is constructed:
external factors, such as enzymes, present at the time of folding have no effect on the final,
or native, state of the protein. This led to the formulation of the protein folding problem:
given a known primary sequence of amino acids, what would be its native, or folded, state
in three-dimensional space.

Recently, several successful predictions of folded protein structures have been made
and announced before the experimental structures were known (see [2], [9]). While most
of these have been made with a blend of a human expert’s abilities and computer assis-
tance, fully automated methods have shown promise for producing previously unattain-
able accuracy.

These machine based prediction strategies attempt to lessen the reliance on experts by
developing a completely computational method. Such approaches are generally based on
two assumptions. First, that thereexists a potential energy function for the protein; and
second that the folded state corresponds to the structure with the lowest potential energy
(minimum of the potential energy function) and is thus in a state of thermodynamic equi-
librium. This view is supported by in vitro observations that proteins can successfully
refold from a variety of denatured states. Evolutionary theory also supports a folded state
at a global energy minimum. Protein sequences have evolved under pressure to perform
certain functions, which for most known occurrences requires a stable, unique, and com-
pact structure. Unless specifically required for a certain function, there was no biochemi-
cal need for proteins to hide their global minimum behind a large kinetic energy barrier.
While kinetic blocks may occur, they should be limited to special proteins developed for
certain functions (see [1]).

2.  A Simplified Model for Computational Methods

Unfortunately, finding the “true” energy function of a molecular structure, if one even
exists, is virtually impossible. For example, with proteins ranging in size up to 1,053
amino acids (a collagen found in tendons), exhaustive conformational searches will never
be tractable. One possible way of finding the global energy minimum is to use a simplified
model of the molecular structure. By using a simplified model, the complexity of the prob-
lem formulation could be reduced to an acceptable level for optimization techniques. Care
must be taken, however, to insure that the error included in such an approximation does
not drive the computational solution too far away from the true native state.

One possible approximation method, which can be applied to molecules that form a lin-
ear chain, represents the molecular structure as a string of beads where the position of
each bead is defined by its location relative to the previous three beads in the sequence
(see [4]). In this model, the chain monomers come in two forms, H (hydrophobic) and P
(polar), where the H-type monomers exhibit a strong pairwise attraction, and hence the
lowest free energy is obtained by those conformations with the greatest number of HH
“contacts” (see [4], [10]). One significant advantage of this formulation of the folding
problem is that it allows the model to take advantage of known scientific knowledge about
the chemical structure of sequences of molecules. The use of knowledge such as the Ram-
achandran plot (see [7]), which specifies the allowable angles between consecutive amino
acids in proteins, greatly simplifies the problem. This paper will examine one such method
for the global optimization of a potential energy function.
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3.  Potential Energy Function

Molecular structure information is generally given in terms of internal molecular coor-
dinates which consist of bond lengths, bond angles, and the mainchain backbone torsion
angles. For example, a protein consists ofn amino acids in a “primary” sequence a1, a2,...,
an, where ai represents theith amino acid in the sequence. For every consecutive pair of
amino acids, ai-1 and ai, li represents the distance by which they are separated. For every
three consecutive amino acids, ai-2, ai-1, and ai, the bond angle,θi, represents the position
of the third amino acid with respect to the line containing the previous two amino acids.
Similarly, for every four consecutive amino acids, ai-3, ai-2, ai-1, and ai, the torsion angle,
ϕi, represents the relative position of the fourth amino acid, ai, with respect to the plane
containing the previous three amino acids (see Figure 3.1).

Empirical representations of the protein’s potential energy include energy terms to rep-
resent chemical bonds, angles, and torsions, as well as non-bonded interactions between
amino acids farther apart in the chemical structure. This simplified definition resembles a
physical model in which beads (e.g. amino acids) are connected by springs (first term of
(1)) at a distance ofli. Bond angles,θi, which are determined by a sequence of three beads
(ai-2,ai-1,ai) are maintained by similar “springs” (the second term of (1)). Torsion angles,
ϕi, are modeled by a trigonometric based penalty (third term of (1)). Such a formulation is
often called a molecular mechanics potential. One often used formula for the overall
potentialU is:

(1)

wherekl andkθ are the bond stretching and angle bending force constants. In the third
term of the equation,Vn is then-fold torsional constant with a phase shift ofδ. This term
provides for preferred torsion angles within the molecular structure. For example, ifn = 3
and the phase shiftδ is zero, preferred torsion angles (configurations resulting in a small
penalty) can be found at 60˚, 180˚, and 300˚. The constantsl0 andθ0 represent the pre-
ferred bond length and bond angle for each sequence of consecutive beads.

The fourth term of the (1), , is known as the Len-
nard-Jones pairwise potential (see Figure 3.2). This term defines the potential energy con-
tributions of all beads separated by more than two along the primary chain. In (1),εi,l and
σi,l are the Lennard-Jones coefficients, which are constants defined by the relationships
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Figure 3.1 Conformation for a Four Bead Sequence
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between the two specific beads (e.g. amino acids) involved. The terms involvingri,l in the
Lennard-Jones expression represent the Euclidean distance between the beads ai and al
(see [3], [5], [8]). The constantHi,l = 1 if beads ai and al are both H-type (attractive mono-
mers), and hence both a repulsive force (ensuring that the chain is “self-avoiding”) and an
attractive force (since the beads are H-H) are added to the potential energy. On the other
hand,Hi,l = 0 if the beads ai and al are H-P, P-H, or P-P pairs, so that the Lennard-Jones
contribution to the total potential energy is just the repulsive force that ensures self-avoid-
ance.

4.  Coordinate Representations

Potential energy functions for molecular conformations usually involve computing
Euclidean distances between molecules. For example the potential function in (1) contains
the Lennard-Jones pairwise potential, , which
depends on the lengths between all beads separated by more than two residues along the
primary chain. Unfortunately, computing distances using bond lengths, bond angles, and
torsion angles is extremely difficult. Since optimization methods require this computation
to be executed often, it is desirable to convert the representation of the problem into carte-
sian coordinates. Once the conversion to three dimensional cartesian coordinates has been
completed, the length between the residues can be found inO(n2) time.   However, the
conversion itself becomes very complex since every set of three residues creates its own
reference framefor bond lengths, bond angles, and torsion angles.

To perform the conversion from internal molecular coordinates (bond lengths, bond
angles, and torsion angles) to a cartesian representation, the first three beads in the
sequence can be fixed, without loss of generality, as depicted in Figure 4.1. The first bead,
a1, is fixed at the origin, (0,0,0). The second bead, a2, is positioned at (-l2,0,0), a distance
from a1 equal to the bond length,l2, along the negative x axis. The location of the third
bead, a3, is fixed at (l3cos(θ3)-l2,l3sin(θ3),0). The fourth and any other beads constituting
the primary sequence are found using the cartesian representation associated with the pre-

Figure 3.2 Lennard-Jones Pairwise Potential (ε=0.181, σ=4.0)
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vious three beads, and the bond length, bond angle, and torsion angle associated with the
bead under consideration. The cartesian representation of this and all following beads in
the sequence can be computed in a variety of ways, two of which are presented in [11] and
[12]. Appendix A (Section 12) presents a discussion of both the computations required to
perform the transformations, and also a derivation of an analytic form of the gradient of
the potential functionU.

5. n-Chain Homopolymer Problem

One simple application of the “folding” problem, which can be modeled as a string of
beads, is then-chain homopolymer problem. Homopolymers can be modeled in manner
similar to proteins: a string of beads (ai, wherei = 1,...,n), positioned by their respective
bond lengths, li, bond angles,θi, and torsion angles,ϕi. However, each “residue” in this
case can be consideredidentical (i.e. all of type H). Furthermore, it is well known that in
the case of hydrocarbons, these homopolymers have “preferred” bond lengths l0 = 1.526
Ang and bond anglesθ0 = 109.47˚ (1.91 rad), and hence this information can be used in
some optimization techniques to reduce the number of problem parameters.

Heptane is ann-chain hydrocarbon homopolymer of length seven (n = 7). It provides a
simple, tractable problem for which the conformational space can (almost) be exhaus-
tively explored. While this structure reflects great simplifications over the general molecu-
lar conformation problem, its complexity must not be underestimated.

The potential energy function is given by (1), where ri,l is the distance between beads,
in this case hydrocarbons, separated by two or more residues along the central chain,kl =
310.0 kcal/Ang2, kθ = 40.0 kcal/rad2, Vn = 1.3 kcal,εi,l = 0.181 kcal,σi,l = 4.0 Ang,l0 =
1.526 Ang,θ0 = 109.47˚ (1.91 rad), andHi,l = 1 for all pairsi,l . Notice thatl0 andθ0 repre-
sent the preferred bond angles and bond lengths andn is set to three, providing three pre-
ferred torsion angles at 60˚, 180˚, and 300˚, whileδ=0˚. Since all hydrocarbons can be
considered identical, only one value of theεi,l andσi,l is required for alli andl.

Despite these simplifications, the conformation problem remains very difficult. Since
torsion angles have three preferred positions (60˚,180˚,300˚), 3n-3, or 81, local minima are
expected (recall that three of the torsion angles are fixed). Tests on the potential function
support this estimate: by starting from 1000 random starting points, 77 local minima were
discovered. However, merely selecting preferred angles does not guarantee that the initial

a1 (0,0,0)
a2 (-l2,0,0)

a3 (l3cos(θ3)-l2,l3sin(θ3),0)

a4

Figure 4.1 Four Bead Sequence (Cartesian Coordinates)
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conformer is also a local minimum. Notice in Table 5.1 that the local minimum found by

starting at (-60,60,-60,60) results in the same local minimum as the point with initial tor-
sion angles (-60,180,180,180). The global minimum for heptane corresponds to the point
with all torsion angles equal to 180 (see Table 5.1 and Figure 5.1).

While it may seem that 77 local minima is relatively small, largern-chain hydrocarbons
produce an exponentially increasing number (i.e.O(3n)) of local minima. A molecule with
as few as 12 beads has 19,683 possible preferred angle configurations, with most of these
likely to produce a local minimum. It can clearly be seen that finding the global minimum
for chains of even moderate length (e.g.n = 20 or more) is intractable with exhaustive
methods. The next few sections discuss a method which attempts to find the global solu-
tion without resorting to an exponential dependence on problem size.

6.  A Convex Global Underestimator

One possibility for aiding the search for the global minimum of the molecule’s potential
energy function is to use a global underestimator to localize the search in the region of the
global minimum. This new method is designed to fit all known local minima with a con-
vex function which underestimates all of them, but which differs from them by the mini-
mum possible amount in the discrete L1 norm. The minimum of this underestimator is
used to predict the global minimum for the function, allowing a localized conformer
search to be performed based on the predicted minimum. A new set of conformers gener-
ated by the localized search can then serve as a basis for another quadratic underestima-

Table 5.1  Selected Minima of Heptane

U(φ) Initial Position,φ(0) Minimized Position,φ*

-0.339727 180 180 180 180 180.000000 180.000000 180.000000 180.000000

-0.215609 -60 60 -60 60 -62.657878 179.600918 -179.857154 179.956953

-0.215524 -60 180 180 180 -62.706316 179.627701 180.119720 180.000000

-0.104118 60 60 -60 60 62.550498 180.191468 -179.798849 62.592457

2.097992 180 -60 60 60 179.378780 -79.278332 79.236470 62.423103

4.384072 180 -60 60 -60 178.741629 -93.723491 69.284953 -94.158124

Figure 5.1 Global Minimum Conformation, φ*, for Heptane
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tion. After several repetitions, the global minimum can be found with reasonable
assurance.

The use of an underestimating function allows the translation of avery complex func-
tion into a simple underestimator. If the underestimator is well suited to the problem (i.e.
provides accurate predictions for the global minimum), immense savings in time can be
achieved. The presence of quadratic terms in the length and bond angle portions of the
molecular energy function support the use of a convex quadratic to provide a suitable
approximation for this problem.

This method is presented in terms of a differentiable functionF(φ), where φ ∈ Rτ (τ
represents the number of torsion angles), and whereF(φ) has many local minima. Since
the bond lengths and bond angle terms in the potential function carry severe quadratic
penalties, they can be assumed to be fixed for the purposes of the global underestimator.
Therefore,φ is a vector of torsion angles of lengthτ, whereτ = n - 3 andn is the number
of residues (recall that the first three are fixed by definition). To begin the iterative process,
a set ofk ≥ 2τ+1 distinct local minima are computed. This can be done with relative ease
by using an efficient unconstrained minimizer, starting with a large enough set of points
chosen at random in an initial hyperrectangle Hφ, which is assumed to enclose the torsion
angle space.

Assuming thatk ≥ 2τ+1 local minimaφ(j), for j=1,...,k, have been computed, a convex
quadratic underestimator functionΨ(φ) is now fitted to these local minima so that it
underestimates all the local minima, and normally interpolatesF(φ(j)) at 2τ+1 points. This
is accomplished by determining the coefficients in the functionΨ(φ) so that

(2)

for j=1,...,k, and where is minimized. That is, the difference betweenF(φ) and
Ψ(φ) is minimized in the discrete L1 norm over the set ofk local minimaφ(j), j=1,...,k. The
underestimating functionΨ(φ) is given by

(3) .

Note thatci anddi appear linearly in the constraints of (2) for each local minimumφ(j).
Convexity of this quadratic function is guaranteed by requiring thatdi ≥ 0 for i=1,...,τ.
Other linear combinations of convex functions could also be used, but this quadratic func-
tion is the simplest.

Additionally, in order to guarantee thatΨ(φ) attains its global minimumΨmin in the
hyperrectangle Hφ = {φi : 0 ≤ φi ≤ φi ≤ φi ≤ 2π}, the additional set of constraints are
imposed on the coefficients ofΨ(φ):

(4)  and  fori=1,...,τ.

Note that the satisfaction of (4) implies thatci ≤ 0 anddi ≥ 0 for i=1,...,τ.

7.  Constructing the Underestimating Function

The unknown coefficientsci, i=0,...,τ, anddi, i=1,...,τ, can be determined by a linear
program which may be considered to be in the dual form. For reasons of efficiency, the
equivalent primal of this problem is actually solved, as described below. The solution to
this primal linear program provides an optimal dual vector, which immediately gives the
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underestimating function coefficientsci anddi. Since the convex quadratic function Ψ(φ)
gives a global approximation to the local minima ofF(φ), then its easily computed global
minimum function valueΨmin is a good candidate for an approximation to the global min-
imum of the correct energy function F(φ).

An efficient linear programming formulation and solution satisfying (2), (3), and (4)
will now be summarized. Let ƒ(j) = F(φ(j)), for j=1,...,k, and let ƒ ∈ Rk be the vector with
elements ƒ(j). Also letω(j) ∈ Rτ be the vector with elements1/2(φ(j)

i)
2, i=1,...,τ, andek ∈

Rk be the vector of ones. Now define the following two matricesΦ ∈ R(τ+1)×k andΩ ∈
Rτ×k:

(5) , .

Finally, letc ∈ Rτ+1, d ∈ Rτ, andδ ∈ Rk be the vectors with elementsci, di, andδi, respec-
tively. Then (2), (3), and (4) can be restated as the linear program (with variablesc, d, and
δ):

(6)

whereD = diag(φ1,φ2,...,φτ), D = diag(φ1,φ2,...,φτ), Ik is the identity matrix of orderk, and
I′τ is theτx(τ+1) “augmented” matrix [0 :Iτ] whereIτ is the identity matrix of orderτ.

Since the matrix in (6) has more rows than columns 2·(k+τ) rows andk+2τ+1 columns,
wherek ≥ 2τ+1), it is computationally more efficient to consider it as a dual problem, and
to solve the equivalent primal. After some simple transformations, this primal problem
reduces to:

(7)

which has only 2τ+1 rows andk+2τ ≥ 4τ+1 columns, and the obvious initial feasible solu-
tion y1 = ek andy2 = y3 = 0. Furthermore, since the first of the 2τ+1 constraints in (7) in
fact requires thatek

Ty1 = 1, then the function ƒTy1 - ƒ
Tek is also bounded below, and so this

primal linear program always has an optimal solution. This optimal solution gives the val-
ues ofc, d, andδ via the dual vectors, and also determines which values of ƒ(j) are interpo-
lated by the potential function Ψ(φ). That is, the basic columns in the optimal solution to
(7) correspond to the conformationsφ(j) for which ƒ(j) = Ψ(φ(j)).

Note that once an optimal solution to (7) has been obtained, the addition of new local
minima is very easy. It is done by simply adding new columns toΦ andΩ, and therefore to

Φ ek
T
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the constraint matrix in (7). The number of primal rows remains fixed at 2τ+1, indepen-
dent of the numberk of local minima.

8.  Iterative Approximation to the Global Minimum

The convex quadratic underestimating function Ψ(φ) determined by the valuesc ∈
Rτ+1 andd ∈ Rτ now provides a global approximation to the local minima ofF(φ), and its
easily computed global minimum pointφmin is given by(φmin)i = -ci/di, i=1,...,τ, with cor-
responding function valueΨmin given by . The valueΨmin is
a good candidate for an approximation to the global minimum of the correct energy func-
tion F(φ), and soφmin can be used as an initial starting point around which additional con-
figurations (i.e. local minima) should be generated. These local minima are added to the
constraint matrix in (7) and the process is repeated. Before each iteration of this process, it
is necessary to reduce the volume of the hyperrectangle Hφ over which the new configura-
tions are produced so that a tighter fit ofΨ(φ) to the local minima “near”φmin is con-
structed.

The rate and method by which the hyperrectangle size is decreased, and the number of
additional local minima computed at each iteration will be determined by computational
testing. But clearly the method depends most heavily on computing local minima quickly
and on solving the resulting linear program efficiently to determine the approximating
functionΨ(φ) over the current hyperrectangle.

If Ec is a cutoff energy, then one means for decreasing the size of the hyperrectangle Hφ
at any step is to let Hφ = {φ: Ψ(φ) ≤ Ec}. To get the bounds of Hφ, considerΨ(φ) ≤ Ec
whereΨ(φ) satisfies (3). Then limitingφi requires that

.

As before, the minimum value ofΨ(φ) is attained whenφi = -ci/di, i=1,...,τ. Assigning this
minimum value to eachφi, exceptφk, then results in

.

The lower and upper bounds onφk, k=1,...,τ, are given by the roots of the quadratic equa-
tion

(8) .

Hence, these bounds can be used to define the new hyperrectangle Hφ in which to generate
new configurations.

Clearly, if Ec is reduced, the size of Hφ is also reduced. At every iteration the predicted
global minimum valueΨmin satisfiesΨmin ≤ F(φ*), whereφ* is the smallest known local
minimum conformation. Therefore, Ec = F(φ*) is often a good choice. If at least one
improved pointφ, with F(φ) < F(φ*), is obtained in each iteration, then the search domain
Hφ will strictly decrease at each iteration, and may decrease substantially in some itera-
tions.

Ψmin c0 ci
2 2di( )⁄

i 1=
τ∑–=

ciφi
1
2
---diφi

2+ 
 
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ckφk
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2
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2+ Ec c0
1
2
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2 di βk≡⁄
i k≠
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ckφk
1
2
---dkφk

2+ βk=
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9.  The Algorithm

Based on the results of the previous three sections, a general method for computing the
global, or near global, energy minimum of the potential energy functionU can now be
described. Recall thatφ ∈ Rτ whereτ represents the number of torsion angles, and the
bond lengths and bond angle are assumed to be fixed for the purposes of the global under-
estimator.

1. Computek ≥ 2τ+1 distinct local minimaφ(j), for j=1,...,k, of the functionF(φ).
2. Compute the convex quadratic underestimator function

by solving the linear program

The optimal solution to this linear program gives the values ofc andd via the dual
vectors.

3. Compute the predicted global minimum pointφmin given by(φmin)i = -ci/di, i=1,...,τ,
with corresponding function valueΨmin given by .

4. If φmin = φ∗, whereφ∗ = argmin{F(φ(j)), j=1,2,... } is the best local minimum found so
far, then stop and reportφ∗ as the approximate global minimum conformation.

5. Reduce the volume of the hyperrectangle Hφ over which the new configurations will
be produced, and remove all columns fromΦ andΩ which correspond to the confor-
mations which are excluded from Hφ.

6. Useφmin as an initial starting point around which additional local minimaφ(j) of F(φ)
(restricted to the hyperrectangle Hφ) are generated. Add these new local minimum
conformations as columns to the matricesΦ andΩ.

7. Return to step 2.
The number of new local minima to be generated in step 6 is unspecified since there is

currently no theory to guide this choice. In general, a value exceeding 2τ+1 would be
required for the construction of another convex quadratic underestimator in the next itera-
tion (step 2). In addition, the means by which the volume of the hyperrectangle Hφ is
reduced in step 5 may vary. One such method, presented in section 8, would use the two
roots of (8) to define the new bounds of Hφ. Another method would be simply to use Hφ =
{ φi : (φmin)i - δi ≤ φi ≤ (φmin)i + δi, i=1,...,τ} whereδi = |(φmin)i - (φ∗)i|, i=1,...,τ.

10.  Computational Results

The computational results presented in this section were obtained on the Cray Y-MP
C90 and Cray T3D systems (at the Minnesota Supercomputer Institute) using the network
PVM message passing system for communication between the C90 and T3D. Steps 1 and
6 of the algorithm (presented in section 9) were performed in parallel on 8 processors of
the T3D, while the remaining steps of the algorithm were done sequentially on the C90.

Ψ φ( ) c0 ciφi
1
2
---diφi

2+ 
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i 1=

τ

∑+=

minimize ƒTy1 ƒTek–
y1 y2 y3, ,

subject to Φ I ′τ
T

I ′τ
T

–

Ω D D–

y1
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Φek

Ωek
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Using this system, solutions were obtained for then-chain hydrocarbon problem with
lengths 4 through 22, 25, and 30. As an example, a solution for the 7 bead hydrocarbon
heptane was obtained in only 8 seconds after 3 iterations (a total of 180 local minimiza-
tions were performed). Table 10.1 summarizes the minimization of the potential function
for heptane (an entry of NC indicates “no change” between the predicted and computed
torsion angles in that step). Notice that the first iteration reports the current “best” confor-
mation (corresponding to the lowest potential energy value) to be approximately the set of
torsion angles (180˚,180˚,300˚,180˚). Recall that the bond lengths and bond angles are

considered fixed for the purposes of the global underestimator. However, the global under-
estimator predicts a conformation close to (180˚, 180˚, 180˚, 180˚). After the second itera-
tion, with Hφ defined by {175.45≤̊ φ1 ≤ 215.45˚, 172.96≤̊ φ2 ≤ 203.96˚, 23.06≤̊ φ3 ≤
303.06˚, 175.98≤̊ φ4 ≤ 215.98˚}, we find that a better function value can be realized at
this conformation. The underestimator and the current global minimum now reside at
almost identical points. The third iteration confirms (180˚, 180˚, 180˚, 180˚) as the global
minimum. This result has been shown through enumeration to be the correct global mini-
mum conformation for the given potential energy function (the solution is shown in Figure
5.1).

As the problem sizen increases, the number of local minima increases exponentially at
the rate ofO(3n) as can be seen in Figure 10.1. With exponential increases in the number
of local minima, exhaustive searches for the global minimum quickly become computa-
tionally intractable. The time required for exhaustive techniques is driven by the number
of local minimizations needed to generate and “relax” each possible conformation. For
example, there are 312 = 531,441 possible conformations for the 15 bead problem, and
hence, to test every possible local minimum conformation is expected to take over 100
hours on a Cray Y-MP C90!

Table 10.1  Solution Summary for Heptane
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ϕ1 20 180 180.12 195.45 20 180.01 NC 4 180.02 NC

ϕ2 330 180 179.53 187.96 15 179.99 NC 4 179.99 179.88

ϕ3 278 180 297.50 163.06 140 180.06 180.14 5 180.12 NC

ϕ4 -60 180 179.63 195.98 20 179.97 179.88 5 179.91 NC

F(φ) -.2967 -.3398 -.3398

φ∗
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Through the use of the global underestimator we can avoid such prohibitive numbers of
calculations; however, the underestimator still remains dependent on the accumulation of
a large number of local minima. In contrast to enumeration, the underestimator method
requires a much less dramatic increase in the number of computations. Since the total
number of underestimation steps needed to find a global minimum remains close to con-
stant (observed experimentally to be less than 10), and each step requiresO(n) local min-
ima to form the underestimator, a linear increase in number of local minimizations is
expected. In addition, since every function evaluation requiresO(n2) time while every gra-
dient evaluation requiresO(n3) time, due to the Lennard-Jones term, the underestimator
method produces a final prediction inO(n4) time on average. The effect of increases in
problem size on the total time for computing the global minimum can be seen in Figure
10.2. The time required to compute the global minimum as a function of the number of
beadsn can be approximated (using a least squares fit) by the function T(n) = 0.1311n4 -
5.843n3 +94.82n2 - 623.9n + 1377 seconds, and therefore increases at an average rate of
O(n4) as expected. In fact, the 22 bead problem took 36 minutes for the final prediction
(Figure 10.3). This prediction was made with nine iterations of the global underestimator,
and a total of 1950 local minimizations were performed. Further increases in problem size
will face even larger increases in execution time: a 50 bead problem is roughly predicted
to require 8 hours on the Cray Y-MP C90 / Cray T3D system (using all 64 processors).
The global energy minimum conformations with corresponding global minimum function
values, forn = 16 throughn = 22, are given in Appendix B (Section 13).

As an alternate means for observing the time complexity of this algorithm, Figure 10.4
shows the solution time per iteration required to obtain the global energy minimum. That
is, the total solution time is normalized by the number of iterations. Since the number of
iterations has been observed to be less than 10 in all cases, the time complexity in this case
is also O(n4). In this case, the functionT(n) = 0.00880n4 - 0.361n3 + 5.66n2 - 36.4n +
80.7 seconds approximates this curve.

Finally, it must be noted that although this method is notguaranteed to find the global
minimum conformation of the potential functionU, it tends to perform reasonably well on

Figure 10.1 Total Number of Local Minima as a Function of the
Number of Residues
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problems of moderate size (n ≤ 30). In fact, based on the computational results obtained
for n = 4 thoughn = 22, the computed global minimum energy for the potential function
U, as a function of the number of beadsn, can be approximated (using a least squares fit)
by the function E(n) = 1.24 - 0.118n - 0.0202n2. Figure 10.5 shows this function superim-
posed on the computed global minima obtained by the algorithm of section 9 for all hydro-
carbon chains of sizen ≤ 22 and also forn = 25 andn = 30. Notice that the function E(n)
does indeed correctly predict the global minimum energy forn = 25 andn = 30, the two
largest problems. This important property permits estimation of the global minimum
energy for larger molecular chains, and can also be used to accelerate the global minimiza-
tion algorithm. Accordingly, the predicted global minimum energy for ann = 50 bead con-
formation is expected to obtain a global minimum energy of approximately -55.14 kcal. If

Figure 10.2 Total CPU Time for Global Minimum Computation as a
Function of the Number of Residues
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Figure 10.3 Global Energy Minimum for 22 Bead
Hydrocarbon
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we define ƒ0 = , where the sum is computed over all pairs (ai,al) of beads separated
by more than two along the primary chain, then ƒ0 represents a lower bound on the poten-
tial functionU from (1). Figure 10.5 also shows ƒ0 (for n-chain hydrocarbons), for com-
parison with the computed energy minima, which is given by ƒ0(n) = -1.05855 + 0.62445
n - 0.0905n2, and the straight chain potential energy value (all torsionsφi = 180˚) which
can be regarded as a simple upper bound. Finally, it should be emphasized that while the
minimum energy is a smooth function of the chain length, the corresponding minimum
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Figure 10.4 Total CPU Time for Global Minimum Computation per
Iteration as a Function of the Number of Residues

Figure 10.5 Computed Global Energy Minima as a
Function of the Number of Residues
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energy conformations (as illustrated in Appendix B) may differ substantailly as the chain
length increases.

11.  Conclusions

A convex quadratic global underestimator method was used to predict stable molecular
conformations forn-chain homopolymers (hydrocarbons) of length 4 through 22, 25, and
30. For the convex global underestimator approach to realize its full potential, not only
must massively parallel machines be used effectively to reduce the time required to com-
pute the large number of local minima, but also, since the local minimization procedures
rely on many function evaluations, improved methods for computing the potential func-
tion must be designed. Such improvements in the function evaluation time (including the
conversions) would be of tremendous benefit, and perhaps will provide the key to reduc-
ing the local minimization times. Recent work in [6] has attempted to specifically address
this problem.

12.  Appendix A: Transformations and Analytic Derivatives

If the three dimensional cartesian position of bead am, m=1,...,n, is represented by (xm,
ym, zm) ∈R3, then the following sequence of matrix products is sufficient to convert from
internal molecular coordinates to the cartesian representation, and is based solely on the
internal molecular coordinates of the previousm-1 beads in the chain:

(9)

where the transformation matrices Bi ∈R4x4, i=1,...,m, were first defined in [11] to be of
the form

(10)

for i=3,...,m. Hence, in order to compute the cartesian positions of each of then beads a1,
a2, ..., an, an O(n) algorithm involving only 4x4 matrix products is sufficient.

For ann bead molecular structure, the potential functionU depends on the 3n - 6 inde-
pendent variableslk, k=2,...,n, θk, k=3,...,n, andϕk, k=4,...,n. Computing the gradient of the
functionU, with respect to the internal coordinates, will therefore require an analytic for-
mulation for , , and . Each of these can be computed using a

xm

ym

zm

1

B1B2…Bm

0

0

0

1

=

B1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= B2,

1– 0 0 l2–

0 1 0 0

0 0 1– 0

0 0 0 1

=

Bi

θicos– θisin– 0 l i– θicos

θi ϕicossin θi ϕicoscos– ϕisin– l i θi ϕicossin

θi ϕicossin θi ϕisincos– ϕicos l i θi ϕisinsin

0 0 0 1

=

U∂ ϕk∂⁄ U∂ θk∂⁄ U∂ l k∂⁄
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sequence of matrix products in a manner similar to the transformations above. To compute
each, first notice from (1) that

(11)

(12)

(13) .

The dependence ofri,l onϕk, θk, and lk is given by the sequence of 4x4 matrix products in
(9). To analytically compute the terms , , and , first definewm =
(xm, ym, zm, 1)T and notice thatri,l

2 = (wi - wl)
T(wi - wl) = vi,l

Tvi,l where

(14)

with e4 = (0,0,0,1)T. Letting

(15)

thenvi,l = Bi,le4 andri,l
2 = (Bi,le4)

T(Bi,le4). Therefore,

and similarly,

.

Finally, the dependence ofBi,l on ϕk (k = 4,...,n), θk (k = 3,...,n), and lk (k = 2,...,n) can be
expressed by the following three cases

(16)
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whereαk represents any one of the three parametersϕk, θk, or lk, and0 is the 4x4 zero
matrix. Note that whereas computing the potential functionU requiresO(n2) steps (due to
the pairwise Lennard-Jones terms), the analytic evaluation of the gradient requiresO(n4)
steps.

13.  Appendix B: Minimum Energy Conformations for n = 16 - 22.
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